Читать книгу "Интерстеллар: наука за кадром - Кип С. Торн"
Шрифт:
Интервал:
Закладка:
Его уравнение содержит множество членов (таких, как U(Q), Hij(Q), Wij и M (поля стандартной модели)), значение которых неизвестно (рис. 25.7). Эти члены касаются природы силовых линий полей балка, того, как они влияют на нашу брану и как поля нашей браны влияют на них. (Более подробные разъяснения см. в приложении «Некоторые технические примечания» в конце книги.)
Рис. 25.7. Я записываю варианты значений для членов уравнения на доске профессора
Когда профессор и его сотрудники говорят «решить уравнение», в Кип-версии они имеют в виду две вещи. Во-первых, выяснить значения всех этих U(Q), Hij(Q), Wij и M. Во-вторых, вывести из уравнения все необходимые сведения о нашей Вселенной, об аномалиях и, что особенно важно, о том, как управлять аномалиями, чтобы эвакуировать людей с Земли.
Когда персонажи фильма говорят «решить гравитацию», они подразумевают то же самое.
Ближе к концу фильма мы видим, как постаревший профессор и повзрослевшая Мёрф пытаются решить его уравнение перебором вариантов. На досках перед ними – перечень возможных значений для неизвестных величин (я записал там эти значения прямо перед началом съемок, рис. 25.7 и 25.8). Затем, в Кип-версии, Мёрф вводит каждый из вариантов в сложную компьютерную программу, написанную специально ради этого. Программа, пользуясь введенным значением, показывает, какие законы следуют в этом случае из формулы профессора, а также как при этом должны себя вести гравитационные аномалии.
.
Рис. 25.8. Мёрф изучает перечень вариантов (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)
В Кип-версии ни одна из попыток не дает поведения аномалий, хотя бы немного похожего на наблюдаемые. Однако в фильме профессор и Мёрф упорно продолжают действовать методом перебора: берут вариант, смотрят на результат, отметают вариант, переходят к следующему и т. д., пока не выбьются из сил. И на следующий день – то же самое.
Немного позже в фильме профессор, лежа на смертном одре, признается Мёрф: «Я лгал, Мёрф. Я обманывал тебя». Пронзительная сцена. Мёрф открывается правда: профессор знал, что с его уравнением что-то не в порядке, знал с самого начала. И столь же пронзительная сцена происходит на планете Манн – разговор доктора Манна с дочерью профессора.
Однако на самом деле, понимает Мёрф вскоре после смерти профессора, «его решение было верным. Он давно его нашел. Но это половина ответа». Другую половину можно найти внутри черной дыры. В ее сингулярности.
В «Интерстеллар» Купер и ТАРС ищут внутри Гаргантюа квантовые данные – данные, которые помогли бы профессору решить его уравнение и эвакуировать человечество с Земли. Они считают, что эти данные должны быть в сингулярности, которая находится внутри Гаргантюа – в «мягкой сингулярности», как выражается Ромилли. Что же такое квантовые данные? Чем они способны помочь профессору? И что такое мягкая сингулярность?
Наша Вселенная в основе своей квантовая. Под этим я имею в виду, что всё в ней флуктуирует, то есть случайным образом колеблется. Хотя бы чуть-чуть, но абсолютно всё!
Когда мы используем высокоточные инструменты для изучения крохотных объектов, мы видим сильные флуктуации. Положение электрона в атоме флуктуирует так быстро и так беспорядочно, что мы не можем знать, где находится электрон в тот или иной момент. И флуктуации электрона ограничиваются лишь размерами атома. Поэтому законы квантовой физики имеют дело не с конкретным положением электрона, а с вероятностями его положения (рис. 26.1).
Рис. 26.1. Плотность вероятности местонахождения электрона для двух разных атомов водорода. Вероятность велика для белых областей, меньше для красных и очень мала для черных. (3, 0, 0) и (3, 2, 0) – наборы квантовых чисел, характеризующие эти состояния электрона
Наблюдая с помощью высокоточных инструментов за большими объектами, мы тоже видим флуктуации. Но флуктуации больших объектов крайне малы. В детекторах гравитационных волн ЛИГО (см. главу 16) положения 40-килограммовых зеркал[81] определяются с помощью лазерных лучей. Положения зеркал флуктуируют, но величина этих флуктуаций намного – в десять миллиардов раз! – меньше размеров атома (рис. 26.2). Тем не менее лазерные лучи ЛИГО уже в течение нескольких лет отслеживают эти флуктуации. (Конструкция ЛИГО, однако, не позволяет флуктуациям мешать измерению гравитационных волн. Мы с моими учениками успели это доказать.)
Рис. 26.2. 40-килограммовое зеркало, подготовленное для установки в ЛИГО. Его положение квантовомеханически флуктуирует – очень-очень слабо, на одну десятимиллиардную от диаметра атома
Поскольку объектам человеческих и больших масштабов присущи лишь крохотные квантовые флуктуации, физики зачастую их не учитывают. Игнорирование флуктуаций сильно облегчает формулы и упрощает расчеты.
Если мы возьмем обычные квантовые законы, не учитывающие гравитацию, а затем отбросим флуктуации, мы получим законы ньютоновской физики – законы, которые в течение нескольких последних столетий использовались для описания планет, звезд, мостов и бильярдных шаров (см. главу 3).
Если же взять законы квантовой гравитации (о которых мы знаем пока немного) и пренебречь флуктуациями, то должны получиться законы теории относительности (которые изучены куда лучше). Флуктуации, которыми мы пренебрежем, – это, например, пена из крохотных флуктуирующих червоточин («квантовая пена», которой пронизано все пространство; см. рис. 26.3 и главу 14)[82]. Без учета флуктуаций законы теории относительности точно описывают искривление пространства и времени вблизи черной дыры и замедление времени на Земле.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Интерстеллар: наука за кадром - Кип С. Торн», после закрытия браузера.